Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 77113

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2015.

Third Semester

Electronics and Communication Engineering

EC 6303 — SIGNALS AND SYSTEMS

(Common to Biomedical Engineering and Medical Electronics Engineering)
(Regulation 2013)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Define a power signal.
- 2. How the impulse response of a discrete time system is useful in determining its stability and causality?
- 3. Find the Fourier coefficients of the signal $x(t) = 1 + \sin 2wt + 2\cos 2wt + \cos \left(3wt + \frac{\pi}{3}\right).$
- 4. Draw the spectrum of a CT rectangular pulse.
- 5. Given $x(t) = \delta(t)$. Find X(s) and X(w).
- 6. State the convolution integral
- 7. Determine the Nyquist sampling rate for $x(t) = \sin(200\pi t) + 3\sin^2(120\pi t)$.
- 8. List the methods used for finding the inverse Z transform.
- 9. Name the basic building blocks used in LTIDT system block diagram.
- 10. Write the nth order difference equation.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Give an account for classification of signals in detail (10)
 - (ii) Sketch the following signals
 - (1) [u(t-2)+u(t-4)]
 - (2) (t-4)[u(t-2)-u(t-4)]. (6)

 \mathbf{Or}

- (b) (i) Check if $x(t) = 4\cos\left(3\pi t + \frac{\pi}{4}\right) + 2\cos(4\pi t)$ is periodic. (6)
 - (ii) For the system $y(n) = \log[x(n)]$, check for linearity, causality, time invariance and stability. (10)
- 12. (a) (i) Determine the fourier series expansion for a periodic ramp signal with unit amplitude and a period T. (10)
 - (ii) Find the fourier transform of $x(t) = te^{-at}u(t)$. (6)

Or

- (b) (i) If $x(t) \Leftrightarrow X(w)$, then using time shifting property show that $x(t+T) + x(t-T) \Leftrightarrow 2X(w)\cos wT$. (6)
 - (ii) Find the inverse Laplace transform of $X(s) = \frac{8s + 10}{(s+1)(s+2)^3}$ (10)
- 13. (a) Solve the differential equation $(D^2 + 3D + 2)y(t) = Dx(t)$ using the input $x(t) = 10e^{-3t}$ and with initial condition $y(0^+) = 2$ and $y(0^+) = 3$. (10)
 - (ii) Draw the block diagram representation for $H(s) = \frac{4s + 28}{s^2 + 6s + 5}$. (6)

Or

- (b) (i) For a LTI system with $H(s) = \frac{s+5}{s^2+4s+3}$ find the differential equation. Find the system output y(t) to the output $x(t) = e^{-2t}u(t)$. (10)
 - (ii) Using graphical method convolve $x(t) = e^{-2t}u(t)$ with h(t) = u(t+2).

- 14. (a) (i) A continuous time sinusoid $\cos(2\pi ft + \theta)$ is sampled at a rate $fs = 1000 \, Hz$. Determine the resulting signal samples if the input signal frequency f is 400 Hz, 600 Hz and 1000 Hz respectively. (8)
 - (ii) Prove the following DTFT properties

(1)
$$nx(n) \Leftrightarrow j \frac{dX(\Omega)}{d\Omega}$$

(2)
$$x(n)e^{j\Omega_c n} \Leftrightarrow X(\Omega - \Omega_c)$$
. (8)

Ωr

(b) (i) Find the DTFT of
$$x(n) = \left(\frac{1}{2}\right)^{n-1} u(n-1)$$
. (5)

- (ii) Using suitable z transform properties find X(z) if $x(n) = \left(n 2\left(\frac{1}{3}\right)^{n-2} u(n-2)\right). \tag{6}$
- (iii) Find the z transform of $x(n) = a^{|n|} 0 < \alpha < 1$. (5)
- 15. (a) (i) Determine the impulse response and step response of y(n) + y(n-1) 2y(n-2) = x(n-1) + 2x(n-2). (10)
 - (ii) Find the convolution sum between $x(n) = \{1, 4, 3, 2\}$ and $h(n) = \{1, 3, 2, 1\}$.

Or

(b) (i) A causal system has
$$x(n) = \delta(n) + \frac{1}{4}\delta(n-1) - \frac{1}{8}\delta(n-2)$$
 and $y(n) = \delta(n) - \frac{3}{4}\delta(n-1)$. Find the impulse response and output if $x(n) = \left(\frac{1}{2}\right)^n u(n)$. (12)

77113